NREL/ORNL/DOE Distributed Power System Integration R&D

"Fast Response, Load-Matching Hybrid Fuel Cell"

Quarterly Review Meeting July 9-10, 2002 Madison, WI

Tom Key EPRI PEAC Corporation 865-218-8082 tkey@epri-peac.com NREL Manager Tom Basso

Project Overview

- **Objective** Demonstrate the potential of hybrid DER technology with improved compatibility and performance characteristics.
- Opportunity Most environmentally preferred advanced generators, e.g. PV, FC, Wind and ?-Turbines, do not provide the robust source characteristics expected in power system design.
- 3-Year Scope Design, assembly, system test and analysis of hybrid PEM fuel cell and high-power high-energy storage capacitors.

Project Benefits

- Pulse load capacity limits of typical DER (PEM fuel cell in this case) solved by hybrid application of ultra capacitors
- Hybrid can provide value added power conditioning for grid and load transients
- Application economics will be enhanced because a smaller fuel cell rating is capable of serving typical inrush and pulse loads

Additional Capacity Required for Starting Appliances

- Inrush Current and Effect on Service Voltage for Starting a Residential Heat Pump.
- Monitoring shows peaks are 6-8 times average power draw.

Current Status – End of Year 1 and Rap up

- Task 1 Evaluate Individual Components, Cost and Performance
 - Evaluate 3-kW PEM Fuel Cell
 - Evaluate Electrochemical Capacitors
- Task 2 Design a Fuel Cell/Electrochemical Capacitor Hybrid System
 - Provide specifications for ultracapacitor and fuel cell module into fuel cell
 - Address integration issues, step-load performance and capability as premium power supply
- Submitted first year report to NREL

Task 1: Fuel Cell Evaluation 3-kW PEM System Test Set Up

PEM Fuel Cell V-I Curve based on load tests

PEM Fuel Cell Step Load Response step load test

• 20-70 amps at 50 volts (1000-3500W) in less than 250 ? sec.

Task 1: Ultracapacitor Selection and Evaluation

Parameter	Lead-Acid Batteries	DC Flywheels (1)	DC Ultra-Capacitors
Power @ 15s W/kg	20 – 330	10 – 130	120 – 1200
Energy @ 15s kJ/kg	10 – 6	10 – 6	10 – 6
Energy Range kJ/kg	93 – 6	10 – 2	12 – 2
Discharge Time Range	90 – .25 minutes	2 – 200 seconds	60 – 1 seconds
Recharge Time Range	Hours to Minutes	Minutes to Seconds	Minutes to Seconds
Roundtrip Efficiency (2)	70-80%	95-98%	97-99%
Typical Cycle Life	2,000 cycles	10,000 cycles	100,000 cycles
Cost \$/kJ Range (3)	\$.1 - 1	\$1 – 4	\$5 - 40
Technology Status	Mature	Available	Emerging

- (1) Flywheel performance, cost, and weight includes generator and containment
- (2) Assumes a slow recharge for best-case efficiency
- (3) First cost over rated discharge time range from longest (lowest cost) to shortest time (highest cost)

16-V double-layer electrochemical ultra capacitors

- Higher-power, efficiency, and cycle life, faster recharging compared to lead-acid batteries more modular than flywheels.
- 20% 30% of the energy in a typical auto battery

Copyright EPRI PEAC Corp. 2000

ESMA 8-16Vdc, 1 MJ, 34 kg

Comparison of Watts per kG for different discharge times

Comparison of Energy per kG for different discharge times

Selected Ultra Capacitor Module

Capacitance **Energy stored in rated** Internal resistance at +20 Capacitor Rated operating F, not less operating voltage window, kJ, °C (-30 °C), mOhm, not module type voltage window, V not less than more than than 10EC501.2-35-13 - 6.5 600 35 3.5(4.5) 13/6.5-0.0035

Task 2: Hybrid System Design Configuration and Test Results

• Fuel cell system designed for robust grid connection and response with potential improve load and grid support via ultra capacitors

The Power of Reliability

3-kW PEM

Fuel Cell and U-cap Hybrid System

- 4-14Vdc Ultra Capacitors, 56Vdc in base of fuel cell cabinet
- 40 cells at 4.41 kJ/cell ~ 176 kJ
- Cost is ~ \$50/cell, \$2000 total

Start from 0 to 100% Loading

Step Loading to Full Load When Ultracapacitor is Charging. Timebase is 20 Msec per Division

System Step Response – 1.5 HP Motor Start

Startup of a 1 ½ HP Motor, Three-Phase, 208 V (Timebase is 10 Seconds/Division)

Momentary Loss of Fuel Cell Stack Voltage

Note: No measurable change after 2000 ride-thru cycles

Conclusion: Year 1 Report Contains

1. Introduction

Improving Dynamic Performance of DER Hybrid Technologies Scope Of Work

- 2. Component and System Test Results
 PEM Fuel Cell, Asymmetrical Ultracapacitor, Hybrid System
- 3. Hybrid System Design and Specification
 Design of Fuel Cell, Storage, Hybrid System Design and Cost
- 4. Related Grid-Interconnection Practices Power conversion, relays, interconnection transformer, etc.
- 5. Recommendations for Related Work Other "hybrid" DER systems, intelligent interface
- 6. Related Reading

Appendix on Double-Layer Electro-Chemical Capacitors

